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.a. Tide Gate • Berry's Creek Study Area 
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RI Approach 
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 Site-specific study questions 
 Framed in Work Plan 

 Answered to define risk, evaluate remedy 
(need/nature) 

 

 Conceptual site models (CSMs) 
 Physical, chemical, biological linkages 

 Framed in Work Plan, updated throughout RI 

 Used to answer Study Questions 
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Scoping Activities (2007 – 2008) 

 Physical template 

 Aerial photograph 
analyses 

 Study area reconnaissance 

 Water Budget 

 Data compilation and 
analysis 

 

 

 Reference area 
identification 

 Ecologically relevant 
receptors identification 

 Conceptual site models  

 Methods development 

 

6 

April 13, 2016 Presentation to EPA of RI Findings 

Nine pre-RI activities to advance the understanding of the 
BCSA, support development of preliminary CSMs, and 
refine study questions 
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Phase 1 (2009 – 2010) 
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Primary focus – characterization of horizontal and 
vertical distribution of COPCs 

 Initial characterization of the aquatic community  

 System hydrodynamics and sediment transport 
dynamics 

 Screening of reference sites 
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Phase 2 (2010 – 2011) 
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Detailed site characterization building on Phase 1 findings 

 COPC concentrations in marsh sediment and biota tissue 

 Horizontal and vertical COPC distribution in waterways 

 Factors influencing COPC fate and transport  

 Hydrodynamic and sediment transport monitoring 

 Monitoring during Hurricane Irene 

 Assessment of the aquatic and marsh communities, the 
aquatic food web, and marsh functions and values 
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Phase 3 (2012 – 2015) 

 Porewater and voltammetry 

 Upland flow and sediment loading  

 Optical monitoring  

 Bathymetric analysis 

 High resolution sediment cores  

 Soft sediment probing  

 COPC concentrations in recently 
deposited sediment  

 Sequential extraction analyses 

 Characterization of the aquatic 
community and food web 

 COPCs in a range of aquatic 
species 

 Toxicity testing  

 Dioxin/furan characterization 

 Marsh vegetation community surveys 
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Focus on understanding COPC transport and fate, and factors 
controlling COPC bioavailability and biouptake 
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Baseline Monitoring (2011 – Ongoing) 
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Data to assess temporal trends within the BCSA in 
response to remedial actions or other changes in the 
system 

 Mummichog and white perch at 40 locations in 
BCSA and 20 stations in the Bellman’s Creek and 
Mill Creek reference sites 

 Surface water: automated monitoring at 4 locations 
in the BCSA, and manual water sampling in 
proximity to the BCSA biota sampling locations 
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Summary of RI Samples (2008 – 2015) 
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Study Area 

Media 

Total Samples 

Sediment 

Water Tissue Waterway Marsh 

Above Tide Gates 254 56 441 23 774 

UBC 1005 442 1182 348 2977 

MBC 1075 332 1008 360 2775 

BCC 373 67 487 241 1168 

LBC 403 224 359 291 1277 

BCSA Subtotal 3110 1121 3477 1263 8971 

Reference Areas 65 131 368 754 1318 

Total 3175 1252 3845 2017 10,289 
Notes: Total sample count does not include samples collected by UOP or Morton, or TS-PS samples. 
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Summary of Key Findings 
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1. The BCSA includes a stable and net depositional 
tidal area 

2. COPC concentrations are substantially higher in the 
northern end of the study area 

3. The urban setting has altered the physical, 
chemical, and biological character of the BCSA, 
which is distinctly different from non-urban areas 

4. Most COPC concentrations are lower at the 
sediment surface and are substantially higher at 
depth 
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Summary of Key Findings 
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5. Natural recovery is occurring in the waterways, 
though variable in magnitude due to occasional 
episodic re-working and resuspension of near 
surface sediment in localized areas 

6. Marsh natural recovery is substantial and 
consistent, and is linked to sediment and COPC 
inputs from waterways 

7. Natural conditions in the fringing marsh system 
sequester COPCs and reduce bioavailability 
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Summary of Key Findings 
14 

8. COPC biouptake is linked surface sediment in 
the waterways and tributaries 

9. BCC and LBC COPC concentrations are 
attenuating consistent with regional conditions 
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CSM Overview - 
Setting 
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Tidally Dominated, Net Depositional 
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Large Storms Result in Short-Term Modification 
of Flow Conditions 
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The Large Phragmites Marshes Importance 
Stability, COPC Fate, Food Web Base 

18 -

) ----~?._c _~~ -
Decomposition 
of LPOM/CPOM 

to FPOM 

FF<OM. •• c· ) 
COPC, 

COPC Bl111;1I 
Di,lCJCllCSIS 

l!P.OM/CP.OM 

COPC Buric1I. 
01;HJ(:IH:S is 



Site-Specific Chemistry CSMs 
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Receptors - Waterways 
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Receptors – Marsh (low tide) 
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Receptors – Marsh (high tide) 
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COPCs – 
Historical & Current Sources 
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 Historical sources  
 Industrial facilities, sewage treatment plants, landfills, 

unpermitted discharges 

 Majority were located in UBC and MBC 

 

 Current sources 
 Secondary sediment sources 

 Regional contributions from Hackensack River Estuary 

 Unpermitted and permitted discharges 

 Atmospheric deposition 

 Uplands flows 
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COPCs 
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 Primary  

 Hg, MeHg, and PCBs  

 Principal risk drivers  

 

 Other chemicals  

 Present above screening-level risk-based benchmarks 

 Analyzed fully in BERA and BHHRA 

 Add minimally to overall site risks 

 Largely co-occur with primary COPCs 
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The BCSA includes a stable net 
depositional tidal area 
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Stable Waterway Morphology Despite 
Extensive Upland Development 
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1947 2013 
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Morphology of the BCSA is Characteristic of a 
Fringing Marsh System – Marsh Dominates  
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Phragmites Marshes are a Key Factor 
Contributing to the Long-Term Stability 
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Stable transition from 
mudflat to marsh 

Long term instability  
when marsh system fails 
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BCSA is Net Depositional and the 
Hackensack River is the Dominant Sediment Source  
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Sources of Inorganic Sediment to 
BCSA Based on Sediment Balance 

Example 137Cs Results 
for Marsh Cores 
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Long-Term Sediment Dynamics 

 Tidal zone accretion rates similar to or greater than 
sea level rise 

 Consistent with other lines of evidence 
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Empirical Water Balance 
for Full BCSA 

(May 2009 – Oct 2011) 

Tidal Flow 
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- Baseflow, 1 % 
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Shear Stress Under Typical Site Conditions Is 
Not Sufficient to Erode Bedded Sediment 
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D. Chan. = Deep Subtidal Channel 
Chan. = Subtidal Channel 
Mud = Mudflat 
 
Dashed line represents the typical measured critical shear stress to erode bedded sediment in BCSA 
 
Values are mean and ±1 standard deviation of model-predicted maximum shear stress across all 
model cells within the full BCSA for each morphologic category. 
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Sediment Physical Character Reflects the 
System Energy Regime 
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Increasing uplands influence and increasing 
coarse grained sediment 
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Increasing energy and increasing 
coarse grained sediment 

Grain size data from sediment samples collected throughout the BCSA 
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Major Storm Events are Infrequent 
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The Tidal Surge During Hurricane Sandy 
Surpassed the 500-Year Flood Stage 
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Infrequent Large Storm Events Can Result In Localized 
Resuspension of Subtidal Bedded Sediment 

36 

April 13, 2016 Presentation to EPA of RI Findings 

(Return Frequency = 3 years) (Return Frequency = 4.5 years) (Return Frequency = 100 years) 
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Shear Stress 

Typ. Critical 
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Mud = Mudflat 
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Dashed line represents the typical measured critical shear stress to erode bedded sediment in BCSA 
 
Values are mean and ±1 standard deviation of model-predicted maximum shear stress across all 
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Comparison of the 2014 and 2008 Bathymetric Surveys 
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Legend Net Change Waterway Area 

No change 91%  

Deepening 6%  

Shoaling 3% -
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COPC concentrations are substantially 
higher in the northern end of the study 
area 
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Consistent Spatial Patterns Observed Across 
Abiotic and Biotic Media 
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Hg MeHg PCBs 

BAZ Sediment (mg/kg)

Surface Water (mg/L)

Mummichog Whole Body (mg/kg)

White Perch Whole Body (mg/kg)

Plot presents median concentration and 25th/75th percentiles 
Surface water data are for unfiltered (total) samples. 
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Contaminant Distribution is Consistent with 
Historical Sources and BCSA Hydrodynamics 

 Majority of historical 
sources in UBC and 
MBC 

 Long residence time of 
the UBC and MBC 
facilitated accumulation 
of COPCs from these 
sources in UBC/MBC 
sediment 
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Refer to Handouts 

COPC Distribution 41 
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The urban setting has altered the 
physical, chemical, and biological 
character of BCSA, which is distinctly 
different from non-urban areas 
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Highly-Developed 
Urban Watershed 
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 Upland over 95% 
developed land 

 Over 50% of the 
uplands is impervious 
surfaces 

 Overall,  aquatic 
environment stressed 
by urban land use 

-

-- BCSA Waterways or Tributaries • Berry's Creek Study Area 
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Anthropogenic Activity Has Modified the 
Region and the BCSA 

 Land development 
 Hydrologic 

modifications 
 Modification to sediment 

sources to the estuary 
 Waste management 

practices 
 Sewage effluent – fine 

particulates 

 Combined sewers –  
pathogens 
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Oradell Dam 
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Extensive Filling of BCSA Wetlands 
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Regional Water Quality Impacts on BCSA 
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Dissolved Oxygen frequently below NJ Standard of 
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4. Most COPC concentrations are lower at the sediment 
surface and are substantially higher at depth 

5. Natural recovery is occurring in the waterways, though 
variable in magnitude due to occasional episodic re-working 
and resuspension of near surface sediment in localized areas 

6. Marsh natural recovery is substantial and consistent, and is 
linked to sediment and COPC inputs from waterways 
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Majority of Waterway Cores Show Strong Natural 
Recovery with Evidence of Episodic Reworking in 
Some Cores 
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Example Waterway Core Showing 
Consistent Deposition 

Example Waterway Core Showing 
Recovery and Episodic Reworking 
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Marsh Natural Recovery is Substantial 
and Consistent within a Given Marsh 
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Typical Tidal Area Marsh Core (UBC) Typical UPIC Marsh Core 
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Depth of Peak Concentration in BCSA 
High Resolution Cores 
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Autochthonous Production in Marshes is 
a Substantial Source of Organic Matter 
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BCSA is Characterized by a Typical 
Estuarine Sediment Structure 

 A common element 
of estuarine 
sediment beds is a 
thin (<0.5 cm) 
surface layer of 
unconsolidated, fine 
particulates termed 
the Fluff Layer* 

 
* (Sanford 1992; P.Y. Maa and Lee 
2002; Small and Prahl 2004) 
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The Fluff Layer is Regularly Resuspended and 
Deposited with Tidal and Storm Flows 
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Slack tide 
• low velocity and shear 

stress 
• particulate deposition 
• decreased TSS 

concentrations 

Peak flood and ebb tide  
• higher velocity and shear 

stress 
• particulate resuspension 
• increased TSS 
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Influence of Particulate Interactions on 
Surface Water Quality 
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COPCs in Surface Water are Strongly Tied to Interaction 
of the Fluff Layer with the Waterway Sediment Bed 
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Marshes are Effective at Trapping Sediment Carried into 
the Marsh from the Waterways during Tidal Flooding 
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There is a Net Mass of TSS and Particulate COPCs 
Imported From the Waterways to the Marshes 
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Conventional Sampling of Particulate COPC and TSS 
Exchange between the Marshes and Waterways 
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Net Exchange of MeHg is from the 
Waterways to the Marshes 

 2014 Optical 
Monitoring Study 
 Verifies that there 

particulate COPCs are 
imported into the 
marshes 

 Shows dissolved MeHg 
is exported from the 
marshes, but flux is 
much smaller than the 
flux of particulate 
MeHg imported into the 
marshes 
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Natural conditions in the fringing 
marsh system sequester COPCs and 
reduce bioavailability 

Key Finding 7 63 
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COPC Fate and Transport is Influenced by Chemical 
Partitioning 

 COPCs are principally 
associated with the particulate 
phase  

 Mercury speciation is strongly 
influenced by geochemistry 

 Methylation and demethylation 
are redox dependent 

 Hg availability for methylation 
is limited by sulfide 
complexation 

 PCBs and Hg bind to organic 
matter 
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Marshes and Other Sources Have Resulted in 
High Concentrations of Organic Matter in BCSA 

 COPCs strongly binds with POC, which limits 
bioavailability 

 Organic matter is a substrate for microbial metabolic 
processes and influences redox conditions 

Average Organic Matter Concentrations in BCSA Sediment and 
Suspended Particulate 

Media Average Percent Organic Matter 
Waterway sediment 6 
Marsh sediment 19 
Surface water particulate 26 
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Phragmites is an Important Food Source for the 
Detritus-Based Food Web – Decreases Biouptake 

 Suspended particulates in the water column are 
dominated by organic detritus 
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*Based on counts of number of particles 

 
-

• Detiriiltus 

• Plhytop llarlkto 

• Zoop lankto1 



Redox Conditions Vary with Physical Setting 
and Hydrologic Conditions 
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Example of Vertical Distribution of MeHg 
in Sediment 
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Bulk of Inorganic Hg is Bound in Sulfide/ Sulfhydryl 
Complexes that are Minimally Available 
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Average Distribution of Low, Moderate, and High Bioavailability 
Fractions Based on Selective Sequential Extraction Testing 

Marsh Sediment Waterway Sediment 
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Includes all data collected from BCSA (all 
reaches, surface and subsurface depth intervals) 
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• High 

Moderat,e, 

Low 



COPC biouptake is linked to 
surface sediment in the waterways 
and tributaries 
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COPCs in Fish Tissue 
71 

 Consistent pattern of higher concentrations 
in the upper reaches, paralleling that in 
sediment 

 

 Concentrations in the lower reaches 
approaching that in reference sites  

April 13, 2016 Presentation to EPA of RI Findings Plot presents median concentration and 25th/75th percentiles 
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COPCs in Mummichog 
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Mercury 

Methyl Mercury 

PCBs (total Aroclors) 

• Dots represent median & bars represent inner quartile range.  
• Pairwise non-parametric comparison of medians (Wilcox rank sum) with  

Bonferroni p-value adjustment at 0.05. 
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COPCs in White Perch 
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Mercury 

Methyl Mercury 

PCBs (total Aroclors) 

• Dots represent median & bars represent inner quartile range.  
• Pairwise non-parametric comparison of medians (Wilcox rank sum) with  

Bonferroni p-value adjustment at 0.05. 
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COPCs in Fiddler Crabs 
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Mercury 

Methyl Mercury 

PCBs (total Aroclors) 

• Dots represent median & bars represent inner quartile range.  
• Pairwise non-parametric comparison of medians (Wilcox rank sum) with  

Bonferroni p-value adjustment at 0.05. 
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Fish Tissue Concentrations Track Sediment, 
Variability Limits Precision of Predictions 
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Mummichog data;  
mean & standard deviation 
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Marsh Biota –  
Less Direct Connection to Sediment 

81 

 Marsh sediment at depth not bioaccessible 

 Plant uptake of COPCs occurring, but limited 

 Marsh surface primary exposure point 
(detrital layer) 

 COPC concentrations in marsh detrital layer 
 Lower than in sediment  

 Likely a function of waterway particulate loading 
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Phragmites Poses Physical Barrier to 
Marsh Sediments for Most Receptors 
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Biological Activity on Marsh Surface, 
Primarily in Detritus & Vegetation 
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Phragmites Roots Accumulate COPCs, but 
little Above-ground Transport 
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Median COPC Concentrations in Phragmites Roots and 
Leaves in BCSA Marshes 

COPC 
Concentration (mg/kg) Ratio  

Leaves:Root Roots Leaves (Live) 
Mercury 1.4 0.016 0.01 
Methyl Mercury 0.0051 0.0002 0.04 
PCBs 0.16 0.0055 0.03 
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COPCs on Marsh Detritus > than in 
Leaves 
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Median COPC Concentrations in Phragmites Leaves and 
Detritus in BCSA Marshes 

COPC 
Concentration (mg/kg) 

Leaves (Live) Leaves(dead) Detritus 
Mercury 0.016 0.015 0.51 
Methyl Mercury 0.0002 0.00037 0.0030 
PCBs 0.0055 0.024 0.060 
 

0.01 0.1 1
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Leaves
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COPCs on Marsh Detritus > Leaves 
Likely a Function of Waterway Particulate 
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 Consistent with Site data 

 Consistent with literature 
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COPCs on Marsh Detritus – Similar Pattern, 
Lower Concentration than Waterway Sediment 
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Mercury 

Methyl Mercury 

PCBs (total Aroclors) 

• Dots represent median & bars represent inner quartile range.  
• Pairwise non-parametric comparison of medians (Wilcox rank sum) with  

Bonferroni p-value adjustment at 0.05. 
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Marsh Biota Can Accumulate COPCs 
from Marsh Surface 
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Methyl Mercury 

PCBs (total Aroclors) 
Spiders 

• Dots represent median & bars represent inner quartile range.  
• Pairwise non-parametric comparison of medians (Wilcox rank sum) with  

Bonferroni p-value adjustment at 0.05. 
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• Ecological Risk Findings  

• Human Health Risk Findings 

• Presentation in late July or early 
August 

Key Findings 9 and 10 89 
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Summary of Key Findings 
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1. The BCSA includes a stable and net depositional 
tidal area 

2. COPC concentrations are substantially higher in the 
northern end of the study area 

3. The urban setting has altered the physical, 
chemical, and biological character of BCSA, which 
are distinctly different from non-urban areas 

4. Most COPC concentrations are lower at the 
sediment surface and are substantially higher at 
depth 

April 13, 2016 Presentation to EPA of RI Findings 

-



Summary of Key Findings 
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5. Natural recovery is occurring in the waterways, 
though variable in magnitude due to occasional 
episodic re-working and resuspension of near 
surface sediment in localized areas 

6. Marsh natural recovery is substantial and 
consistent, and is linked to sediment and COPC 
inputs from waterways 

7. Natural conditions in the fringing marsh system 
sequester COPCs and reduce bioavailability 
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Summary of Key Findings 
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8. COPC biouptake is linked surface sediment in 
the waterways and tributaries 

9. BCC and LBC COPC concentrations are 
attenuating consistent with regional conditions 
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